FILED/ACCEPTED DEC - 4 2008 Duane Morris FIRM and AFFILIATE OFFICES NEW YORK SINGAPORE LONDON WILLIAM K. KEANE DIRECT DIAL: 202.776.5243 PERSONAL FAX: 202.478.2160 E-MAIL: kkeane@duanemorris.com Federal Communications Commission Office of the Secretary างางาง.duanemorris.com OF HERVARING December 3, 2008 Ms. Marlene H. Dortch Secretary Federal Communications Commission 445 12th Street SW. Washington DC 20554 EX PARTE OR LATE FILED LOS ANGELES CHICAGO HOUSTON HANO! PHILADEI PHIA SAN DIEGO SAN FRANCISCO BALTIMORE BOSTON WASHINGTON DC LAS VEGAS ATLANTA MIAMI PITTSBURGH NEWARK **BOCA RATON** WILMINGTON PRINCETON LAKE TAHOE HO CHI MINH CITY Re: Ex Parte Filing WT Docket No. 07-293; IB Docket No. 95-91; GEN Docket No. 90-357; RM-8610 Dear Ms. Dortch: This is to confirm that on December 2, the undersigned, together with Jennifer Warren, Lockheed Martin Corporation; Oakley Brooks, Bombardier Inc.; Frank Weaver and Joseph Cramer, The Boeing Company; Chip Yorkgitis representing Raytheon Company; Marc Ehudin, Textron; and Daniel G. Jablonski, Johns Hopkins Applied Physics Lab, met with Commission Jonathan Adelstein and his Wireless Legal Advisor, Renée Crittendon, regarding the position of Aerospace & Flight Test Radio Coordinating Council and its Member Companies in the above-referenced proceedings. The AFTRCC representatives distributed the materials attached. The points covered during the meeting are reflected in those materials, as well as in AFTRCC's earlier filings in the Dockets. In addition, a question was posed as to the utility of geographic exclusion zones. The AFTRCC representatives observed that this notion had not been raised, to AFTRCC's knowledge, in any of the Wireless Communications Service party filings to date, and that it is questionable whether, if proposed, the matter would be within the scope of the proceeding. A copy of this ex parte statement is being submitted for the above-referenced proceedings. Sincerely. William K Kean Counsel for Aerospace and Flight Test Radio Coordinating Council cc: The Honorable Jonathan Adelstein Renée Crittendon > No. of Copies rec'd___(List ABCDE # Aerospace and Flight Test Radio Coordinating Council Federal Communications Commission Presentation to the ## 43+10 log (P) Will Have Serious Adverse Impact on Flight Testing - For example, as explained in slides to follow, a single WCS base station will double the noise floor of an AMT station -and thus reduce the maximum aircraft operating range -- 15.7 km from the AMT receiver - Problem exacerbated by the fact that there is no guard band between WCS and AMT -- unlike top end of band (2390-2400 MHz). At bottom end (2360-2370 MHz) WCS and AMT are side-by-side. - Flight testing uses high-gain antennas in noise-limited systems where all available link margin is applied to fade mitigation ## Typical AMT band noise floor measurement at Pax River, Maryland Note absence of OOBE from 2345 – 2360 MHz into the 2360 – 2390 MHz band! (as also validated by -91 dBm measured noise floor of AMT receiver) ### Assumptions Favorable to WCS Used to Determine Impact - Although WCS usage could be significant, consider that only the closest of the WCS transmitters are directly in the field of view of an AMT ground station antenna: - For base stations, propagation is r², but assume only one tower is in view of an AMT antenna at a time - For portables, propagation is r², but assume 10 dB window attenuation, and that only 3 devices are in view at a time - For mobiles, assume propagation is r^{2.4}, there is no additional attenuation, and that only 10 devices are in view ## Assumptions Favorable to WCS Used to Determine Impact of WCS on AMT Use (cont.) - I/N = 0 dB (which is 8 dB higher than the aggregate I/N specified in Rec. M.1459) - Reduction of maximum range at which an aircraft can be tracked in the direction of the WCS interference source by 30% - AMT system noise temperature is assumed to be 455 K, although systems without combiners can operate at 250K - All of these assumptions are extremely favorable to WCS #### The Math: #### $\alpha \beta N[P_tG_t]A_{eff}/[4\pi r^x] = kT_{AMT}B_{AMT}$ #### Where - α takes into account decrease in OOBE emission level from 2360 2365 MHz - B is building attenuation - N = number of WCS emitters "seen" by AMT receive antenna - P_tG_t is the WCS OOBE limit (e.g., 43 + 10 log (P) = $10^{-4.3}$), with G_t representing the WCS transmitter gain - $-A_{eff} = 4.67 \text{ m}^2$ is the effective area of an 8 foot diameter AMT receive antenna - r is the distance from the WCS source to the AMT receive antenna at which I/N = 0 dB - x is the assumed propagation constant - k is Boltzmann's constant = 1.38×10^{-23} Joule/Kelvin - T_{AMT} = AMT system noise temperature (including combiner contribution; not all AMT systems use combiners) measured to be 455 Kelvin (250 Kelvin is appropriate for non-combiner systems, but is less favorable to WCS proponents) - B_{AMT} = AMT channel bandwidth = 5 MHz ### Chart Comparing Effects of Various OOBE Levels: Showing distances at which WCS devices double the noise floor of an AMT station, thus decreasing the maximum aircraft operating range by 30 percent | | 43 + 10 LOG (P) | 55 + 10 LOG (P) | 60 + 10 LOG (P) | 70 + 10 LOG (P) | |---------------------------------------|-----------------|-----------------|-----------------|-----------------| | Single Base
station ^{1,2} | 15.7 km | 4.6 km | 2.8 km | 1.1km | | 3 Portables ^{2,3} | 8.6 km | 2.5 km | 1.5 km | 0.6 km | | 10 Mobiles ^{2,3} | 8.2 km | 2.9 km | 1.9 km | 0.9 km | ¹This assumes the OOBE is measured after the antenna, and that peak, rather than average value is used. ³This is the number of "closest-in" WCS devices simultaneously in view of the AMT receive antenna; This extremely low estimate is highly favorable to WCS proponents. ²A factor of 4 increase in the number of WCS transmitters simultaneously in view will double the distance numbers for base stations and portables, and almost double the distance for mobiles. #### Impact on Flight Test Airspace - Illustrative material that follows is for Patuxent River, Maryland (F/A-18, V-22, Presidential Helicopter, etc.), and Mid-Continent Airport, Wichita, Kansas (Cessna, Learjet, etc.) - Effect of WCS deployment near these test centers is to dramatically reduce the airspace available for testing since aircraft routinely operate up to the maximum possible range from the AMT ground station, as permitted by fading conditions - Due to aircraft maneuvering which blocks the AMT receive antenna - Due to multipath Grey circles are potential WCS tower-mounted base stations at approximately 1-mile separations within a 3 mile radius of Pax River AMT operations. Interference budget will be dominated by these "close-in" towers and their associated portable and mobile WCS terminals. Beam of AMT receive antenna as it cuts across WCS towers while tracking an aircraft Geography near Pax River, Maryland Impact of WCS on AMT Airspace at Pax River For a given value of signal to noise ratio, doubling the AMT noise floor shrinks the maximum telemetering distance from the aircraft by 30%. A 30% reduction is illustrated above by comparing the airspace usable for testing at distances from Pax River of 75 and 50 miles, respectively. ### Impact to Flight Test Airspace at Wichita, Kansas Geography near Wichita, Kansas showing possible WCS base station tower placement within 2 miles of Mid-Continent Airport, where Cessna, Learjet, and others conduct their flight tests Beam of AMT receive antenna as it cuts across WCS towers and their associated portable and mobile terminals while tracking an aircraft State: Kansas ### Impact to Flight Test Airspace at Wichita, Kansas (cont.) Max AMT operational distance near Wichita of 200 miles is reduced to 140 miles if WCS placement doubles the AMT noise floor. ## Flight Test Operating Areas Already Constrained. 43+10 log (P) dB will AEROSPACE & FLIGHT TEST REDIRECTORS add Further Constraints -- as well as Risks and Costs. - FAA Considerations - FAA designates daily flight test areas, high speed corridors, sub-space corridors, etc. - FAA Air Traffic Control exercises real time control of aircraft operations during testing in National Air Space - Redirect test aircraft to avoid other aircraft - Redirect test aircraft to avoid weather hazards - Redirect aircraft to avoid "keep out" areas - Clear 3-D "blocks" of airspace by altitude, area and time. Clearance often paused or suspended with no warning - Prohibit flights in certain areas (commercial air traffic corridors, MOAs, Homeland Security No Fly Zones) ## Flight Test Operating Areas Already Constrained. 43+10 log (P) dB will ARROSPACE & FLIGHT TEST RADIO COUNCIL and Further Constraints -- as well as Risks and Costs (cont.). - Test Requirement Considerations - Safety fly to the clear sky (pilot must be able to see the ground) - Natural Icing Tests fly where the ice is forming - Stall and Flutter Testing fly where the air is calm and the sky is clear - Runway Performance Testing calm air - Fly-by-wire technology makes data quality even more critical ### Impact of Reduction in TM Range - $A_{circle} = \pi r^2$. A 30% reduction in reliable range results in a 51% reduction in reliable operating area for a point radius authorization - With less airspace to work with, there is increased likelihood of encountering bad weather in airspace that remains = test cancellations/delays - With less airspace to work with, increased likelihood of encountering changes in air traffic patterns = test cancellations/delays - With less airspace to work with, increased likelihood of spectrum congestion between and among manufacturers seeking to operate at the same time - Impact data supplied in Appendix for selected Companies. Data characteristic of impacts to be expected across the industry. - Test flights can cost \$50,000 or more depending on the aircraft and program. Cancellations/delays affect FAA certification, contract delivery schedules, and ability to attract future business. - Test cancellations/delays places U.S. manufacturers at a competitive disadvantage in the global marketplace -- losses for Company, customers, employees, and the economy. - Reduced flight test airspace impacts safety in the event of interference to the telemetry stream. ### AFTRCC Proposals are Reasonable - 70+10 log (P) in 2360-2370 MHz will not hamper mobile use. - 75+10 log (P) for base stations subject to prior coordination. - FCC itself proposed 90+10 log (P) in H-block FNPRM -- on top of a 10 MHz guard band. - Continue to require use of peak power, not average power, measurement. - Peak is used for WCS band (Rule 27.50(a)); AWS-1 band (Rule 27.50(d)); 1390-1395/1432-1435 MHz bands [adjacent to flight testing] (Rule 27.50(e)); and 1670-1675 MHz band (Rule 27.50(f)). - Require use of TPC to control/minimize interference. ### Mobile Devices Can Meet a 70 + 10 log (P) db Limit - By using better modulation techniques, pre-mod low-pass filters, and/or post-mod stagger-tuned micro-miniature band-pass filters - One example of commercially available filter technology that can be adapted for low cost mass production of filters for WCS portable and mobile transmitters #### **Surface Mount** Microwave Filter Company, Inc. offers lumped constant filters for a broad range of selected frequencies, topologies and packages. Use of standard packages has enabled MFC to provide OEM and custom filters while keeping design time to a minimum. http://www.microwavefilter.com/ The curves below show the attenuation as a function of the normalized 3dB bandwidth. The following formula is used to predict the attenuation for a given number of sections: Number of normalized 3 dB bandwidths from center frequency, BW_N = Rejection Frequency (MHz) – Center Frequency (MHz) – 3 dB Bandwidth (MHz) Note 60 dB per octave fall-off! ### FCC Has Repeatedly Recognized Protected Status for Flight Test Band - Has recognized that flight testing is a safety service which must be protected "from harmful interference that could result in loss of life." - Has determined that telemetry bands should be classified as Restricted and protected from fundamental emissions of unlicensed devices. In so doing, the agency stressed that the telemetry band "involv[es] safety of life." ^{2/} ¹ In the Matter of Amendment of Part 2 of the Commission's Rules Regarding Implementation of the Final Acts of the World Administrative Radio Conference, Geneva, 1979. FCC 84-306, released July 2, 1984, at 2. ² In the Matter of Revision of Part 15 of the Rules Regarding the Operation of Radio Frequency Devices Without an Individual License, 4 FCC Rcd 3493, 3502 (1989). ## FCC Has Repeatedly Recognized Protected Status for Flight Test Band (cont.) Has recognized that the potential cost to manufacturers and the taxpayer from even brief telemetry drop-outs is significant, e.g. "[F]light test, telemetry, and telecommand operations are vital to the U.S. aerospace industry to produce, deliver, and operate safe and efficient aircraft and space vehicles." 2/ ³ Second Notice of Inquiry in GEN. Docket No. 89-554, In the Matter Of An Inquiry Relating to Preparation for the International Telecommunication Union World Administrative Radio Conference for Dealing with Frequency Allocations in Certain Parts of the Spectrum, FCC 90-316, 5 FCC Rcd 6046, 6060, para. 101 (1990). #### U.S. Has Protected Flight Test Band U.S. took extraordinary measures at WRC-07 to protect Sband telemetry: "The United States of America and Canada refer to footnote number 5.394 of Article 5 of the Radio Regulations concerning the use of the 2 300-2 390 MHz band in the United States and the 2 300-2 400 MHz band in Canada and state that, in application of the Final Acts of the World Radiocommunications Conference (Geneva, 2007) in those bands, the aeronautical mobile service for telemetry has priority over other uses by the mobile services." ⁴ Declaration No. 78, Document 427-E (WRC-07) (emphasis added). ## Appendix #### Additional Risks/Costs - A large part of the cost to certify a new aircraft comes in preparing the aircraft for each test flight. - 43+10 log (P) dB will reduce and also segment the remaining airspace, thereby decreasing the number of test points flown per flight - 43+10 log (P) dB will require aircraft manufacturers to fly many additional flights resulting in substantial increases to: - Cost - Safety Risk (more take-offs & landings) - Carbon Footprint (twice as much fuel burned at take-off) - A "medium" developmental flight test program at Bell costs \$20-30,000 per flight hour - Practically, we have ~4-6 hours in the morning of each test day that provide the weather conditions needed (All test A/C have similar requirements) - This fact makes operational readiness and test efficiency paramount – the aircraft must be properly-configured, the onboard instrumentation packages fully-functional, and the ground-based data/telemetry systems active and available to take advantage of a narrow time window - Reduction in telemetry range limits flexibility in scheduling and reduces productivity, thereby increasing the cost of flight test programs